题目内容
如图,在等腰Rt△ABC中,∠CAB=90°,P是△ABC内一点,且PA=1,PB=3,PC=
.请利用旋转的方法
求:∠CPA的大小.
解:∵△ABC为等腰直角三角形,AB=AC,
∴把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,如图,
∴∠P′AP=90°,P′A=PA=1,P′C=PB=3,
∴△PAP′为等腰直角三角形,
∴P′P=
PA=
,∠APP′=45°,
在△P′PC中,P′C=3,P′P=
,PC=
,
∵(
)2+(
)2=32,
∴PC2+P′P2=P′C2,
∴△P′PC为直角三角形,∠CPP′=90°,
∴∠CPA=∠CPP′+∠APP′=90°+45°=135°.
分析:由于△ABC为等腰直角三角形,AB=AC,则把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,根据旋转的性质得到∠P′AP=90°,P′A=PA=1,P′C=PB=3,得到△PAP′为等腰直角三角形,根据等腰直角三角形的性质得P′P=
PA=
,∠APP′=45°,在△P′PC中,可得到PC2+P′P2=P′C2,根据勾股定理的逆定理得到△P′PC为直角三角形,∠CPP′=90°,利用∠CPA=∠CPP′+∠APP′进行计算即可.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了勾股定理的逆定理以及等腰直角三角形的判定与性质.
∴把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,如图,
∴∠P′AP=90°,P′A=PA=1,P′C=PB=3,
∴△PAP′为等腰直角三角形,
∴P′P=
在△P′PC中,P′C=3,P′P=
∵(
∴PC2+P′P2=P′C2,
∴△P′PC为直角三角形,∠CPP′=90°,
∴∠CPA=∠CPP′+∠APP′=90°+45°=135°.
分析:由于△ABC为等腰直角三角形,AB=AC,则把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,根据旋转的性质得到∠P′AP=90°,P′A=PA=1,P′C=PB=3,得到△PAP′为等腰直角三角形,根据等腰直角三角形的性质得P′P=
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了勾股定理的逆定理以及等腰直角三角形的判定与性质.
练习册系列答案
相关题目
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
| A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |