题目内容

如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,∠ABC的平分线分别交AD、AC于点E、F,连接DF,下列结论中错误的是


  1. A.
    △ABD∽△CAD
  2. B.
    △BDF∽△DFA
  3. C.
    △BDE∽△BAF
  4. D.
    △ABE∽△CBF
B
分析:由∠BAC=90°,AD⊥BC,得到∠BAD=∠C,∠DAC=∠ABD,根据有两组对应角相等的两三角形相似得Rt△ABD∽Rt△CAD;又∠ABF=∠CBF,再根据有两组对应角相等的两三角形相似易得Rt△BDE∽Rt△BAF,△ABE∽△CBF;而要△BDF∽△DFA,需满足DF为直角三角形ADC斜边上的中线,根据题意不能得到这个结论.
解答:∵∠BAC=90°,AD⊥BC,
∴∠BAD=∠C,∠DAC=∠ABD,
∴Rt△ABD∽Rt△CAD,所以A选项正确;
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴Rt△BDE∽Rt△BAF,△ABE∽△CBF,所以C与D选项都正确;
∵∠DAF≠∠DBF,
∴要△BDF∽△DFA,则∠DAF=∠ADF,则FA=FD,可得到FC=FD,即要满足DF为直角三角形ADC斜边上的中线,根据题意不能得到这个结论,所以B选项错误.
故选B.
点评:本题考查了三角形相似的判定:有两组对应角分别相等的两三角形相似.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网