题目内容

如图,在△ABC中,DE∥BC,且S△ADE:S四边形BCED=1:2,BC=2数学公式.求DE的长.

解:∵S△ADE:S四边形BCED=1:2,S△ABC=S△ADE+S四边形DBCE
∴S△ADE:S△ABC=1:3,
又∵DE∥BC,
∴△ADE∽△ABC,
∴S△ADE:S△ABC=(2
又∵BC=2
∴DE=2
分析:由于S△ADE:S四边形BCED=1:2,那么可得S△ADE:S△ABC=1:3,根据DE∥BC,那么△ADE∽△ABC,可知S△ADE:S△ABC=(2,结合BC=,可求DE.
点评:本题利用了平行线分线段成比例定理的推论、相似三角形的面积比等于相似比的平方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网