题目内容
分析:首先根据题意推出△AEC≌△ABF,根据∠AEO+∠BEO=60°,推出∠BEO+∠ABO=60°,即得∠BEO+∠ABO+∠EBA=120°,根据三角形内角和定理,即可推出∠EOB=60°.
解答:解:∵∠EAB=∠FAC,
∴∠EAC=∠BAF,
在△AEC和△ABF中,
∵AE=AB,∠EAC=∠BAF,AC=AF,
∴△AEC≌△ABF,
∴∠AEO=∠ABO
∵∠AEO+∠BEO=60°
∴∠BEO+∠ABO=60°
∵在△EBO中,∠BEO+∠DBO=60°,∠EBA=60°,∠BEO+∠ABO+∠EBA=120°
∴∠EOB=60°
故选择B.
∴∠EAC=∠BAF,
在△AEC和△ABF中,
∵AE=AB,∠EAC=∠BAF,AC=AF,
∴△AEC≌△ABF,
∴∠AEO=∠ABO
∵∠AEO+∠BEO=60°
∴∠BEO+∠ABO=60°
∵在△EBO中,∠BEO+∠DBO=60°,∠EBA=60°,∠BEO+∠ABO+∠EBA=120°
∴∠EOB=60°
故选择B.
点评:本题主要考察全等三角形的判定和性质、三角形内角和定理,关键在于通过求证△AEC≌△ABF,推出∠BEO+∠ABO+∠EBA=120°.
练习册系列答案
相关题目