ÌâÄ¿ÄÚÈÝ
¼×¡¢ÒÒÁ½Ð£²Î¼ÓijÊнÌÓý¾Ö¾Ù°ìµÄ³õÖÐÉúÓ¢Óï¿ÚÓᄎÈü£¬Á½Ð£²ÎÈüÈËÊýÏàµÈ£®±ÈÈü½áÊøºó£¬·¢ÏÖѧÉú³É¼¨·Ö±ðΪ7·Ö¡¢8·Ö¡¢9·Ö¡¢l0·Ö£¨Âú·ÖΪ10·Ö£©£®ÒÀ¾Ýͳ¼ÆÊý¾Ý»æÖÆÁËÈçÏÂÉв»ÍêÕûµÄͳ¼ÆÍ¼±í£®
¼×У³É¼¨Í³¼Æ±í
£¨1£©ÔÚͼ1ÖУ¬¡°7·Ö¡±ËùÔÚÉÈÐεÄÔ²ÐĽǵÈÓÚ £»
£¨2£©ÇëÄ㽫ͼ2µÄÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©¾¼ÆË㣬ÒÒУµÄƽ¾ù·ÖÊÇ8.3·Ö£¬ÖÐλÊýÊÇ8·Ö£¬ÇëÇó³ö¼×УµÄƽ¾ù·Ö¡¢ÖÐλÊý£»
£¨4£©Èç¹ûÒª´ÓͬһËùѧУѡȡ8È˵Ĵú±í¶Ó²Î¼ÓÊм¶ÍÅÌåÈü£¬ÊнÌÓý¾Ö¾ö¶¨´ÓÕâÁ½ËùѧУÖеÄÒ»ËùÌôÑ¡²ÎÈüÑ¡ÊÖ£¬Ó¦Ñ¡ÄÄËùѧУ£¿

¼×У³É¼¨Í³¼Æ±í
| ·ÖÊý | 7·Ö | 8·Ö | 9·Ö | 10·Ö |
| ÈËÊý | 11 | 0 | ¡ö¡ö | 8 |
£¨2£©ÇëÄ㽫ͼ2µÄÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©¾¼ÆË㣬ÒÒУµÄƽ¾ù·ÖÊÇ8.3·Ö£¬ÖÐλÊýÊÇ8·Ö£¬ÇëÇó³ö¼×УµÄƽ¾ù·Ö¡¢ÖÐλÊý£»
£¨4£©Èç¹ûÒª´ÓͬһËùѧУѡȡ8È˵Ĵú±í¶Ó²Î¼ÓÊм¶ÍÅÌåÈü£¬ÊнÌÓý¾Ö¾ö¶¨´ÓÕâÁ½ËùѧУÖеÄÒ»ËùÌôÑ¡²ÎÈüÑ¡ÊÖ£¬Ó¦Ñ¡ÄÄËùѧУ£¿
¿¼µã£ºÌõÐÎͳ¼ÆÍ¼,ÉÈÐÎͳ¼ÆÍ¼,¼ÓȨƽ¾ùÊý,ÖÐλÊý
רÌ⣺
·ÖÎö£º£¨1£©ÀûÓÃ360¡ã¼õÈ¥ÆäËü¸÷×é¶ÔÓ¦µÄÔ²ÐĽǼ´¿ÉÇó½â£»
£¨2£©Ê×ÏÈÇóµÃÒÒУ²ÎÈüµÄÈËÊý£¬¼´¿ÉÇóµÃ³É¼¨ÊÇ8·ÖµÄÈËÊý£¬´Ó¶ø½«ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©Ê×ÏÈÇóµÃµÃ·ÖÊÇ9·ÖµÄÈËÊý£¬È»ºó¸ù¾Ýƽ¾ùÊý¹«Ê½ºÍÖÐλÊýµÄ¶¨ÒåÇó½â£»
£¨4£©Ö»Òª±È½Ïÿ¸öѧУǰ8ÃûµÄ³É¼¨¼´¿É£®
£¨2£©Ê×ÏÈÇóµÃÒÒУ²ÎÈüµÄÈËÊý£¬¼´¿ÉÇóµÃ³É¼¨ÊÇ8·ÖµÄÈËÊý£¬´Ó¶ø½«ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©Ê×ÏÈÇóµÃµÃ·ÖÊÇ9·ÖµÄÈËÊý£¬È»ºó¸ù¾Ýƽ¾ùÊý¹«Ê½ºÍÖÐλÊýµÄ¶¨ÒåÇó½â£»
£¨4£©Ö»Òª±È½Ïÿ¸öѧУǰ8ÃûµÄ³É¼¨¼´¿É£®
½â´ð£º½â£º£¨1£©¡°7·Ö¡±ËùÔÚÉÈÐεÄÔ²ÐĽǵÈÓÚ360¡ã-90¡ã-72¡ã-54¡ã=144¡ã£»
£¨2£©ÒÒУ²ÎÈüµÄ×ÜÈËÊýÊÇ£º4¡Â
=20£¨ÈË£©£¬
Ôò³É¼¨ÊÇ8·ÖµÄÈËÊýÊÇ£º20-8-4-5=3£¨ÈË£©£®
£»
£¨3£©¼×УÖе÷ÖÊÇ9·ÖµÄÈËÊýÊÇ£º20-11-8=1£¨ÈË£©£®
Ôò¼×УµÄƽ¾ù·ÖÊÇ£º
=8.3£¨·Ö£©£¬
¼×УµÄÖÐλÊýÊÇ£º7·Ö£»
£¨4£©¼×µÃ·ÖÊÇ10·ÖµÄÕýºÃÓÐ8ÈË£¬¶øÒÒ°àµÃ·ÖÊÇ10·ÖµÄÓÐ5ÈË£¬²»×ã8ÈË£¬ÔòӦѡÔñ¼×У£®
£¨2£©ÒÒУ²ÎÈüµÄ×ÜÈËÊýÊÇ£º4¡Â
| 72 |
| 360 |
Ôò³É¼¨ÊÇ8·ÖµÄÈËÊýÊÇ£º20-8-4-5=3£¨ÈË£©£®
£¨3£©¼×УÖе÷ÖÊÇ9·ÖµÄÈËÊýÊÇ£º20-11-8=1£¨ÈË£©£®
Ôò¼×УµÄƽ¾ù·ÖÊÇ£º
| 7¡Á11+8¡Á0+9¡Á1+10¡Á8 |
| 20 |
¼×УµÄÖÐλÊýÊÇ£º7·Ö£»
£¨4£©¼×µÃ·ÖÊÇ10·ÖµÄÕýºÃÓÐ8ÈË£¬¶øÒÒ°àµÃ·ÖÊÇ10·ÖµÄÓÐ5ÈË£¬²»×ã8ÈË£¬ÔòӦѡÔñ¼×У£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÌõÐÎͳ¼ÆÍ¼ºÍÉÈÐÎͳ¼ÆÍ¼µÄ×ÛºÏÔËÓ㬶Á¶®Í³¼ÆÍ¼£¬´Ó²»Í¬µÄͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆÍ¼ÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£»ÉÈÐÎͳ¼ÆÍ¼Ö±½Ó·´Ó³²¿·ÖÕ¼×ÜÌåµÄ°Ù·Ö±È´óС£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èç¹ûa¡Âb=-a£¨a¡Ù0£©£¬ÄÇôbµÈÓÚ£¨¡¡¡¡£©
| A¡¢1 | B¡¢-1 | C¡¢0 | D¡¢¡À1 |
ÏÂÃæÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢3a+2b=5ab |
| B¡¢3a2b-3ba2=0 |
| C¡¢3x2+2x3=5x5 |
| D¡¢3y2-2y2=1 |