题目内容
全球七大洲的总面积约为149 480 000km2,对这个数据精确到百万位可表示为 km2.
已知:Rt△ABC≌Rt△ADE, ∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.
(1)请找出图中其他的全等三角形;
(2)求证:CD=EB;
(3)求证:CF=EF.
一次函数y=2x+b与两坐标轴围成三角形的面积为4,则b= .
如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图:
①△ABC关于x轴对称的图形△A1B1C1;
②将△A1B1C1向右平移7个单位得到△A2B2C2.
(2)回答下列问题:
①△A2B2C2中顶点B2坐标为 .
②若P(a,b)为△ABC边上一点,则按照(1)中①、②作图,点P对应的点P2的坐标为 .
如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组的解是 .
已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为( )
A.二、三、四 B.一、二、四
C.一、三、四 D.一、二、三
某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.
(1)写出y与x之间的函数表达式.
(2)旅客最多可免费携带多少千克的行李?
方程组的解为,则a、b分别为( )
A.a=8,b=-2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8
如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.
(1)求海盗船所在C处距货轮航线AB的距离.
(2)若货轮以45海里/时的速度在A处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)