题目内容

18、用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有
3
分析:根据题意可知三角形的周长为12,再根据三角形的三边关系即可求得答案.
解答:解:设摆出的三角形的三边有两边是x根,y根,则第三边是(12-x-y)根,
根据三角形的三边关系定理得到:
x<6,y<6,x+y>6,
又因为x,y是整数,
因而同时满足以上三式的x,y的分别值是(不计顺序):2,5;3,4;3,5;4,4;4,5;5,5.
则第三边对应的值是:5;5;4;4;3;2.
因而三边的值可能是:2,5,5;或3,4,5;或4,4,4共三种情况,
则能摆出不同的三角形的个数是3.
点评:此题考查了三角形的三边关系:在组合三角形的时候,注意较小的2边之和应大于最大的边,三角形三边之和等于12.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网