题目内容
如图四边形ABCD内接于⊙O,AB为直径,PD切⊙O于D,与BA延长线交于P点,已知∠BCD=130°,则∠ADP=______.

连接BD,
∵四边形ABCD内接于⊙O,∠BCD=130°,
∴∠BAD=50°,
∵AB为直径,
∴∠ADB=90°,
∴∠ABD=∠40°
∵PD切⊙O于D,
∴∠ADP=∠ABD=40°,
故答案为:40°.

∵四边形ABCD内接于⊙O,∠BCD=130°,
∴∠BAD=50°,
∵AB为直径,
∴∠ADB=90°,
∴∠ABD=∠40°
∵PD切⊙O于D,
∴∠ADP=∠ABD=40°,
故答案为:40°.
练习册系列答案
相关题目