题目内容
如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.
(1)求证:AE平分∠BAC;
(2)若AD=2,EC=
,∠BAC=60°,求⊙O的半径.
(1)证明:连接OE,
∴OA=OE,
∴∠OEA=∠OAE.
∵PQ切⊙O于E,
∴OE⊥PQ.
∵AC⊥PQ,
∴OE∥AC.
∴∠OEA=∠EAC,
∴∠OAE=∠EAC,
∴AE平分∠BAC.
(2)解:连接BE,
∵AB是直径,
∴∠AEB=90°.
∵∠BAC=60°,
∴∠OAE=∠EAC=30°.
∴AB=2BE.
∵AC⊥PQ,
∴∠ACE=90°,
∴AE=2CE.
∵CE=
,
∴AE=2
.
设BE=x,则AB=2x,由勾股定理,得
x2+12=4x2,
解得:x=2.
∴AB=4,
∴⊙O的半径为2.
分析:(1)连接OE,根据切线的性质就可以得出OE⊥PQ,就可以得出OE∥AC,可以得出∠BAE=∠CAE而得出结论;
(2)连接BE,由AE平分∠BAC就可以得出∠BAE=∠CAE=30°,就可以求出AE=2
,在Rt△ABE中由勾股定理可以求出AB的值,从而求出结论.
点评:本题考查了角平分线的判定及性质的运用,切线的性质的运用,30度角的直角三角形的性质的运用,平行线的判定及性质的运用,解答时合理运用切线的性质是关键.
∴OA=OE,
∴∠OEA=∠OAE.
∵PQ切⊙O于E,
∴OE⊥PQ.
∵AC⊥PQ,
∴OE∥AC.
∴∠OEA=∠EAC,
∴∠OAE=∠EAC,
∴AE平分∠BAC.
(2)解:连接BE,
∵AB是直径,
∴∠AEB=90°.
∵∠BAC=60°,
∴∠OAE=∠EAC=30°.
∴AB=2BE.
∵AC⊥PQ,
∴∠ACE=90°,
∴AE=2CE.
∵CE=
∴AE=2
设BE=x,则AB=2x,由勾股定理,得
x2+12=4x2,
解得:x=2.
∴AB=4,
∴⊙O的半径为2.
分析:(1)连接OE,根据切线的性质就可以得出OE⊥PQ,就可以得出OE∥AC,可以得出∠BAE=∠CAE而得出结论;
(2)连接BE,由AE平分∠BAC就可以得出∠BAE=∠CAE=30°,就可以求出AE=2
点评:本题考查了角平分线的判定及性质的运用,切线的性质的运用,30度角的直角三角形的性质的运用,平行线的判定及性质的运用,解答时合理运用切线的性质是关键.
练习册系列答案
相关题目
| A、1cm | B、2cm | C、3cm | D、4cm |