题目内容
【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
![]()
【答案】(1)y=
,y=x﹣1;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),(
,
),(﹣
,﹣
).
【解析】试题分析:(1)设反比例函数解析式为y=
,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB 的解析式为y=ax+b,将A与B的坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;
(2)根据图像写出答案即可;
(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标
解:(1)设反比例函数解析式为y=
,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y=
;
把A(3,m)代入y=
,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得
,
解得
,
∴直线AB 的解析式为y=x﹣1;
(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;
(3)存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,
∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y=
x,
可设直线C1C2的解析式为y=
x+b',
把C1(﹣3,﹣2)代入,可得﹣2=
×(﹣3)+b',
解得b'=
,
∴直线C1C2的解析式为y=
x+
,
解方程组
,可得C2(
,
);
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,
设直线AC3的解析式为y=
x+
,
把A(3,2)代入,可得2=
×3+
,
解得
=﹣
,
∴直线AC3的解析式为y=
x﹣
,
解方程组
,可得C3(﹣
,﹣
);
综上所述,点C的坐标为(﹣3,﹣2),(
,
),(﹣
,﹣
).
![]()
【题目】已知关于m的方程
(m-16)=7的解也是关于x的方程2(x-3)-n=52的解.
(1)求m,n的值;
(2)已知∠AOB=m°,在平面内画一条射线OP,恰好使得∠AOP=n∠BOP,求∠BOP.
![]()
【题目】为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?
(2)甲、乙两班各有多少名同学?