题目内容
在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.
(1)若从中任取一球,球上的数字为偶数的概率为多少?
(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.
(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
解:(1)∵不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,
∴从中任取一球,球上的数字为偶数的概率为:
=
;
(2)画树状图得:

∵共有12种等可能的结果,两个球上的数字之和为偶数的有(1,3),(2,4),(3,1),(4,2)共4种情况,
∴两个球上的数字之和为偶数的概率为:
=
;
(3)∵两个球上的数字之差的绝对值为1的有(1,2),(2,3),(2,1),(3,2),(3,4),(4,3)共6种情况,
∴P(甲胜)=
,P(乙胜)=
,
∴P(甲胜)=P(乙胜),
∴这种游戏方案设计对甲、乙双方公平.
分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;
(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式即可求得答案;
(3)分别求得甲胜与乙胜的概率,比较概率,即可得出结论.
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
∴从中任取一球,球上的数字为偶数的概率为:
(2)画树状图得:
∵共有12种等可能的结果,两个球上的数字之和为偶数的有(1,3),(2,4),(3,1),(4,2)共4种情况,
∴两个球上的数字之和为偶数的概率为:
(3)∵两个球上的数字之差的绝对值为1的有(1,2),(2,3),(2,1),(3,2),(3,4),(4,3)共6种情况,
∴P(甲胜)=
∴P(甲胜)=P(乙胜),
∴这种游戏方案设计对甲、乙双方公平.
分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;
(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式即可求得答案;
(3)分别求得甲胜与乙胜的概率,比较概率,即可得出结论.
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
练习册系列答案
相关题目
在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
| 摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 | ||
摸到白球的频率
|
0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)假如你去摸一次,你摸到白球的概率是
(3)试估算口袋中黑、白两种颜色的球有多少只.