题目内容
(b-c)2+(c-a)2+(a-b)2=(b+c-2a)2+(c+a-2b)2+(a+b-2c)2,则
=______.
| (bc+1)(ca+1)(ab+1) |
| (a2+1)(b2+1)(c2+1) |
设a-b=x,b-c=y,c-a=z,
∵(b-c)2+(c-a)2+(a-b)2=(b+c-2a)2+(c+a-2b)2+(a+b-2c)2,
∴x2+y2+z2=(z-x)2+(x-y)2+(y-z)2,
∴x2+y2+z2=z2-2xz+x2+x2-2xy+y2+y2-2yz+z2,
∴x2+y2+z2-2xy-2yz-2zx=0,
又∵x+y+z=a-b+b-c+c-a=0,
∴(x+y+z)2=0,
∴x2+y2+z2+2xy+2yz+2zx=0.
∴x2+y2+z2=0,
∴x=y=z=0,
∴a=b=c,
∴原式=
=
=1.
故答案为1.
∵(b-c)2+(c-a)2+(a-b)2=(b+c-2a)2+(c+a-2b)2+(a+b-2c)2,
∴x2+y2+z2=(z-x)2+(x-y)2+(y-z)2,
∴x2+y2+z2=z2-2xz+x2+x2-2xy+y2+y2-2yz+z2,
∴x2+y2+z2-2xy-2yz-2zx=0,
又∵x+y+z=a-b+b-c+c-a=0,
∴(x+y+z)2=0,
∴x2+y2+z2+2xy+2yz+2zx=0.
∴x2+y2+z2=0,
∴x=y=z=0,
∴a=b=c,
∴原式=
| 3(bc+1) |
| 3(a2+1) |
=
| 3(a2+1) |
| 3(a2+1) |
=1.
故答案为1.
练习册系列答案
相关题目