题目内容

已知等边△ABC和点P,设点P到△ABC三边的AB、AC、BC的距离分别是h1,h2,h3,△ABC的高为h,请你探索以下问题:
(1)若点P在一边BC上(图1),此时h3=0,问h1、h2与h之间有怎样的数量关系?请说明理由;
(2)若当点P在△ABC内(图2),此时h1、h2、h3与h之间有怎样的数量关系?请说明理由;
(3)若点P在△ABC外(图3),此时h1、h2、h3与h之间有怎样的数量关系
h=h1+h2-h3
h=h1+h2-h3
.(请直接写出你的猜想,不需要说明理由.)
分析:把点P与各顶点分别连接起来.根据组合图形的面积与分割成的图形面积之间的关系建立关系式,然后根据等边三角形性质求解.
解答:解:
(1)h=h1+h2,理由如下:
连接AP,则 S△ABC=S△ABP+S△APC
1
2
BC•AM=
1
2
AB•PD+
1
2
AC•PF
1
2
BC•h=
1
2
AB•h1+
1
2
AC•h2
又∵△ABC是等边三角形
∴BC=AB=AC,
∴h=h1+h2

(2)h=h1+h2+h3 ,理由如下:
连接AP、BP、CP,则 S△ABC=S△ABP+S△BPC+S△ACP
1
2
BC•AM=
1
2
AB•PD+
1
2
AC•PF+
1
2
BC•PE
1
2
BC•h=
1
2
AB•h1+
1
2
AC•h2+
1
2
BC•h3
又∵△ABC是等边三角形,
∴BC=AB=AC.
∴h=h1+h2+h3

(3)h=h1+h2-h3
当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.
理由如下:连接PB,PC,PA
由三角形的面积公式得:S△ABC=S△PAB+S△PAC-S△PBC
1
2
BC•AM=
1
2
AB•PD+
1
2
AC•PE-
1
2
BC•PF,
∵AB=BC=AC,
∴h1+h2-h3=h,
即h1+h2-h3=h.
点评:此题考查等边三角形的性质,运用等积法建立关系构思巧妙,也是此题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网