题目内容
阅读下列材料并填空:
你能比较两个数20062007和20072006的大小吗?为了解决这个问题,先把问题一般化,即比较(n+1)n和nn+1的大小(n为正整数),然后分析n=1,n=2,n=3,…,从这些简单情形人手,发现规律,经过归 纳,猜想得出结论。
(1)通过计算,比较下列①~③各组两个数的大小 (在横线上填“>”“<”或是“=”)。
①12____21;②23____ 32;③34____ 43;
④45>54;⑤5 6> 6 5;⑥67>76;⑦78>87;…;
(2)从第(1)题的结果经过归纳,可以猜想nn+1和 (n+1)n的大小关系是____;
(3)根据上面的归纳猜想得到一般性的结论,可以得到:20082009_____20092008(填“>”“<”或“=”)。
你能比较两个数20062007和20072006的大小吗?为了解决这个问题,先把问题一般化,即比较(n+1)n和nn+1的大小(n为正整数),然后分析n=1,n=2,n=3,…,从这些简单情形人手,发现规律,经过归 纳,猜想得出结论。
(1)通过计算,比较下列①~③各组两个数的大小 (在横线上填“>”“<”或是“=”)。
①12____21;②23____ 32;③34____ 43;
④45>54;⑤5 6> 6 5;⑥67>76;⑦78>87;…;
(2)从第(1)题的结果经过归纳,可以猜想nn+1和 (n+1)n的大小关系是____;
(3)根据上面的归纳猜想得到一般性的结论,可以得到:20082009_____20092008(填“>”“<”或“=”)。
解:(1)①<;②<;③>;
(2)当n为不大于2的整数时,nn+1<(n+1)n,
当n为大于2的整数时,nn+1>(n+1)n;
(3)>。
(2)当n为不大于2的整数时,nn+1<(n+1)n,
当n为大于2的整数时,nn+1>(n+1)n;
(3)>。
练习册系列答案
相关题目
阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=
④结论:Sn=
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出 个三角形;
当仅有4个点时,可作出 个三角形;
当仅有5个点时,可作出 个三角形;
…
(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
(3)推理:
(4)结论:
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
| 点的个数 | 可作出直线条数 | ||
| 2 | 1=S2=
| ||
| 3 | 3=S3=
| ||
| 4 | 6=S4=
| ||
| 5 | 10=S5=
| ||
| … | … | ||
| n | Sn=
|
| n(n-1) |
| 2 |
| n(n-1) |
| 2 |
(1)分析:
当仅有3个点时,可作出
当仅有4个点时,可作出
当仅有5个点时,可作出
…
(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
| 点的个数 | 可连成三角形个数 |
| 3 | |
| 4 | |
| 5 | |
| … | |
| n |
(4)结论:
、阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
②归纳:考察点的个数和可连成直线的条数
发现:如下表
| 点的个数 | 可作出直线条数 |
| 2 | 1= |
| 3 | 3= |
| 4 | 6= |
| 5 | 10= |
| …… | …… |
| n |
|
③推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即![]()
④结论:![]()
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出 个三角形;
当仅有4个点时,可作出 个三角形;
当仅有5个点时,可作出 个三角形;
……
(2)归纳:考察点的个数n和可作出的三角形的个数
,发现:(填下表)
| 点的个数 | 可连成三角形个数 |
| 3 |
|
| 4 |
|
| 5 |
|
| …… |
|
| n |
|
(3)推理:
(4)结论: