题目内容
如图,点C是AB上一点,O是圆心,且∠AOB=120°,则∠ACB= 度.
【答案】分析:设点E是优弧AB上的一点,则∠AEB=60°,由圆内接四边形的对角互补知,即可求∠ACB=180°-∠AEB=120°.
解答:
解:设点E是优弧AB上的一点,
∵∠AOB=120°,
∴∠AEB=60°,
∴∠ACB=180°-∠AEB=120°.
点评:本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和圆内接四边形的性质求解.
解答:
∵∠AOB=120°,
∴∠AEB=60°,
∴∠ACB=180°-∠AEB=120°.
点评:本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和圆内接四边形的性质求解.
练习册系列答案
相关题目