题目内容

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是

【答案】15°
【解析】解:∵∠BAC=90°,∠B=60°, ∴∠ACB=90°﹣60°=30°,
∵△AB′C由△ABC绕点A顺时针旋转90°得到,
∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,
∴△ACC′为等腰直角三角形,
∴∠AC′C=45°,
∴∠CC′B′=∠AC′C﹣∠AC′B′=45°﹣30°=15°.
故答案为15°.
先根据三角形内角和计算出∠ACB=90°﹣60°=30°,由于△AB′C由△ABC绕点A顺时针旋转90°得到,根据旋转的性质得到AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,则△ACC′为等腰直角三角形,得到∠AC′C=45°,然后利用∠CC′B′=∠AC′C﹣∠AC′B′计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网