题目内容
下列各数:,,,3.1010010001……,其中是无理数的个数为( )
A.2 B.3 C.4 D.5
(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:
(1)在扇形统计图中,“合格“的百分比为 .
(2)本次体质抽测中,抽测结果为“不合格“等级的学生有 人.
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有 人.
已知sin6°=a,sin36°=b,则=( )
A. B.2a C. D.b
某种生物孢子的直径为0.00058m,把0.00058用科学计数法表示为 .
已知关于x的分式方程的解是非正数,则a的取值范围是( )
A.a≤-1 B.a≤-1且a≠-2 C.a≤1且a≠-2 D.a≤1
(12分)我市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家惠农政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
如图所示,已知,为反比例函数图像上的两点,动点
在正半轴上运动,当线段与线段之差达到最大时,点的坐标是 .
(本题满分10分)如图①,Rt△ABC中,∠B=900,∠CAB=300,它的顶点A的坐标为(10,0),顶点B的坐标为 (5,5) ,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.
在根式,,,中随机抽取一个,它是最简二次根式的概率为 .