题目内容
计算:
如图,,AD、BD、CD分别平分的外角、内角、外角,以下结论:;;;其中正确的结论有______填序号.
请阅读求绝对值不等式和的解集过程:
对于绝对值不等式,从图1所示的数轴上看:大于而小于的数绝对值是小于的,所以的解集是;
对于绝对值不等式,从图2所示的数轴上看:小于而大于的数绝对值是大于的,所以的解集…….
解答下面的问题:
解不等式:⑴. ; ⑵. .
某整数的两个不同平方根是与,则这个数是( )
A. 1 B. 3 C. -3 D. 9
如图, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.
(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明: ∠E+∠F=90°.
(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)
解:(1) ADB∥C,理由如下:
∵∠ADE+∠BCF=180°(已知) ,
∠ADE+∠ADF=180°(平角的定义),
∴∠ADF__________ (______________________),
∴AD∥BC (__________________________);
(2)AB与EF的位置关系是:互相平行.
∵BE平分∠ABC(已知),
∴A∠BC=2∠ABE(角平分线定义).
又∵∠ABC=2∠E(已知),
∴2∠E=2∠ABE (____________________),
∴∠E=∠ABE(____________________),
∴_____________ (________________________).
已知一个正数的两个平方根分别是2m-6和3+m,则(-m)2的值为____________.
若点P(x,y)在第四象限,且, ,则x+y等于:
A. -1 B. 1 C. 5 D. -5
如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A点沿纸盒面爬到B点,那么它所行的最短路线的长是________.
如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD -∠ABD=∠____________
∴∠ACD -∠ABD=______________°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD -∠A1BD=(∠ACD-∠ABD)
∴∠A1=___________°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An 的数量关系____________;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= .
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q —∠A1的值为定值.
其中有且只有一个是正确的,请写出正确的结论,并求出其值.