题目内容
(2004•吉林)小王家里装修,他去商店买灯泡,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知这两种灯泡的照明效果和使用寿命都一样,已知小王家所在地的电价为每度0.5元,请问当两种灯泡的使用寿命超过多长时间时,小王选择节能灯才合算?(用电量(度)=功率(千瓦)×时间(时)
【答案】分析:设使用寿命为x小时,利用电费之间的不等关系列出不等式方程可解.
解答:解:设使用寿命为x小时,选择节能灯才合算,依题意得
2+0.5×
x>32+0.5×
解得x>1000.
答:当这两种灯的使用寿命超过1000小时的时侯,小王选择节能灯才合算.
点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
解答:解:设使用寿命为x小时,选择节能灯才合算,依题意得
2+0.5×
解得x>1000.
答:当这两种灯的使用寿命超过1000小时的时侯,小王选择节能灯才合算.
点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
练习册系列答案
相关题目
(2004•吉林)如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
| 纸片的边长n | 2 | 3 | 4 | 5 | 6 |
| 使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
(2004•吉林)如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
| 纸片的边长n | 2 | 3 | 4 | 5 | 6 |
| 使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.