题目内容

ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图(1))。
(1)在图(1)中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论;
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
解:(1)①直线FG,与直线CD的位置关系为互相垂直,
证明:如图(1),设直线FG,与直线CD的交点为H,
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC,
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC,
∴△G1EF≌△P1EC
∴∠G1FE=∠P1CE,
∵EC⊥CD,
∴∠P1CE=90°
∴∠G1FE=90°,∠EFH=90°
∴∠FHC=90°
∴FG1⊥CD;
②按题目要求所画图形见图(1),直线G1G2与直线CD的位置关系为互相垂直;
(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵AD=6,AE=1,tanB=
∴DE=5,tan∠EDC=tanB=
可得CE=4,由(1)可得四边形FECH为正方形,
∴CH=CE=4,
①如图(2),当P1点在线段CH的延长线上时,
∵FC1=CP1=x,P1H=x-4,


②如图(3),当P1点在线段CH上(不与C、H两点重合)时,
∵FG1=CP1=x,P1H=4-x,


③当P1点与H点重合时,即x=4时,
△P1FG1不存在;
综上所逑,y与x之间的函数关系式及自变量x的取值范围是+2x(0<x<4)。


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网