题目内容
如图,已知
、
分别是平行四边形
的边
、
上的两点,且
.![]()
(1)求证:
;
(2)判定四边形
是否是平行四边形?
可通过证明
,
,又
,
(2)四边形
是平行四边形.
解析试题分析:(1)证明:
四边形
为平行四边形,
,
.
又
,
.
(2)
,又由
知
,
,即
.
四边形
是平行四边形.
考点:平行四边形判定及性质
点评:本题难度中等,主要考查学生对平行四边形判定及性质及全等三角形知识点的掌握,为中考常考题型,要求学生牢固掌握解题技巧。
练习册系列答案
相关题目
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
⑵如图3,⊙
内有一点
,请用尺规作图画出点
的反演点
;(保留画图痕迹,不必写画法).
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
的半径为
,另一个半径为
的⊙
,作射线
交⊙
于点
、
,点
、
关于⊙
的反演点分别是
、
,点
为⊙
上另一点,关于⊙
的反演点为
.求证:∠
=90°.
⑴如图2,⊙
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆