题目内容

如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。

①作∠DAC的平分线AM。②连接BE并延长交AM于点F。

【解析】解:①作图正确,并有痕迹。

②连接BE并延长交AM于点F。

(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。

【解析】解:AF∥BC且AF=BC

理由如下:∵AB=AC,∴∠ABC=∠C∴∠DAC=∠ABC+∠C=2∠C

由作图可知:∠DAC=2∠FAC

∴∠C=∠FAC.∴AF∥BC.

∵E是AC的中点,  ∴AE=CE,  ∵∠AEF=∠CEB  ∴△AEF≌△CEB  ∴AF=BC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网