题目内容

如图,△ABC的三个顶点坐标分别为A(2,3)、B(1,0)、C(3,0),把△ABC沿x轴负方向平移5个单位,得到△A′B′C′(顶点对应关系:A→A′B→B′C→C′)
(1)在右图坐标系中作出△A′B′C′.
(2)连接点A、点B′,求线段A B′的长.
(3)求线段A B′所在直线的函数解析式.

解:(1)如图所示;

(2)根据勾股定理,AB′==

(3)设直线AB′的函数解析式为y=kx+b,
把A(2,3)、B(-4,0)分别代入上式:
解得,
所以,直线AB′的解析式为y=x+2.
分析:(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;
(2)在网格结构中,利用勾股定理列式计算即可得解;
(3)利用待定系数法求直线解析式解答.
点评:本题考查了利用平移变换作图,待定系数法求直线解析式,熟悉网格结构,准确找出对应点的位置是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网