题目内容
A.(
B.(1,
C.(
D.(1,
【答案】分析:根据菱形的性质,作CD⊥x轴,先求C点坐标,然后求得点B的坐标.
解答:
解:作CD⊥x轴于点D,
∵四边形OABC是菱形,OC=
,
∴OA=OC=
,
又∵∠AOC=45°
∴△OCD为等腰直角三角形,
∵OC=
,
∴OD=CD=OC×sin∠COD=OC×sin45°=1,
则点C的坐标为(1,1),
又∵BC=OA=
,
∴B的横坐标为OD+BC=1+
,B的纵坐标为CD=1,
则点B的坐标为(
+1,1).
故选C.
点评:本题综合考查了图形的性质和坐标的确定,综合性较强.
解答:
∵四边形OABC是菱形,OC=
∴OA=OC=
又∵∠AOC=45°
∴△OCD为等腰直角三角形,
∵OC=
∴OD=CD=OC×sin∠COD=OC×sin45°=1,
则点C的坐标为(1,1),
又∵BC=OA=
∴B的横坐标为OD+BC=1+
则点B的坐标为(
故选C.
点评:本题综合考查了图形的性质和坐标的确定,综合性较强.
练习册系列答案
相关题目