题目内容
如图,点G是△ABC的重心,GD∥BC,则SADG:S△ABC等于
- A.2:3
- B.4:9
- C.2:9
- D.无法确定
C
分析:根据重心的性质得出
=
,以及
=
,即可得出SADG:S△ANC的比值,再利用三角形中线的性质得出S△ANC=S△ABN,进而得出答案.
解答:
解:延长AG到BC于点N,
∵点G是△ABC的重心,GD∥BC,
∴
=
,
∴
=
,
∴SADG:S△ANC=(
)2=
,
∵根据G是△ABC的重心,则AN是三角形中线,
∴S△ANC=S△ABN,
∴SADG:S△ABC=4:18=2:9.
故选:C.
点评:此题主要考查了相似三角形的判定与性质和三角形重心的性质等知识,根据已知得出SADG:S△ANC=(
)2是解题关键.
分析:根据重心的性质得出
解答:
∵点G是△ABC的重心,GD∥BC,
∴
∴
∴SADG:S△ANC=(
∵根据G是△ABC的重心,则AN是三角形中线,
∴S△ANC=S△ABN,
∴SADG:S△ABC=4:18=2:9.
故选:C.
点评:此题主要考查了相似三角形的判定与性质和三角形重心的性质等知识,根据已知得出SADG:S△ANC=(
练习册系列答案
相关题目