题目内容
如图,正方形ABCD的边长为,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为___________
如图,Rt△ABC中,∠ACB=90°,∠A=50°,D为AB上一点,过点D作DE∥AC,若CD平分∠ADE,则∠BCD的度数为_____°.
直线y=kx+1经过点A(1,3),求关于x的不等式kx+1≥3的解集.
一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是( )
A. x>2 B. x>4 C. x<2 D. x<4
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.
(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG于点T,交FG于点P,则GT的长为( )
A. 2 B. 2 C. D. 1
如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
若抛物线y=x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到的新抛物线的解析式时( )
A. y=(x+2)2+3 B. y=(x+2)2﹣3 C. y=(x﹣2)2+3 D. y=(x﹣2)2﹣3
如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于_____.