题目内容

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上任意一点(不与点A、B重合),连接AB、AC、BC、OC.
(1)指出图中与∠ACO相等的一个角;
(2)当点C在⊙P上什么位置时,直线CA与⊙O相切?请说明理由;
(3)当∠ACB=60°时,两圆半径有怎样的大小关系?请说明你的理由.

【答案】分析:要使直线CA与⊙O相切,只要证得∠OAC=90°即可;根据第二问第三问就不难求得了.
解答:解:(1)连接OA,OB.
在⊙O中,∵OA=OB,
=
∴∠ACO=∠BCO;

(2)连接OP,并延长与⊙P交于点D.
若点C在点D位置时,直线CA与⊙O相切
理由:连接AD,OA,则∠DAO=90°
∴OA⊥DA
∴DA与⊙O相切
即点C在点D位置时,直线CA与⊙O相切.

(3)当∠ACB=60°时,两圆半径相等;
理由:作直径OD,连接BD,AD,OA,
∵∠ADB=∠ACB=60°,PO垂直平分AB,
=
∵∠ADO=∠BDO,
∴∠ADO=30°,
∵OD是直径,
∴∠DAO=90°,
∴OA=OD,
∴OA=PO,
∴当∠ACB=60°时,两圆半径相等.
点评:本题考查了等弧所对的圆周角相等、直径所对的圆周角等于90°,切线的判定等知识.具有一定的综合性和难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网