题目内容
已知一次函数y=kx+b的图象经过点(-1,-2),且与正比例函数y=
x的图象相交于点(2,a)求:
(1)a的值;
(2)一次函数y=kx+b的解析式;
(3)在图中画出这两个函数图象,并求这两个函数图象与x轴所围成的三角形面积.
(2)∵a=1,
∴一次函数y=kx+b的图象经过点(-1,-2),(2,1),
∴
解得:
∴一次函数解析式为:y=x-1;
(2)当x=0时,0-1=y,
解得y=-1;
两个函数图象与x轴所围成的三角形面积:
分析:(1)把(2,a)代入正比例函数y=
(2)把(-1,-2),(2,1)代入一次函数y=kx+b中可得关于a、b的方程组,再解方程可得解析式;
(3)求出y=x-1与y轴交点,再利用三角形的面积公式计算出答案.
点评:此题主要考查了待定系数法求一次函数解析式,以及求三角形的面积,关键是掌握凡是函数图象经过的点必能满足解析式.
练习册系列答案
相关题目