ÌâÄ¿ÄÚÈÝ
¼ºÖª£ºÈçͼ1£¬Å×ÎïÏßy=ax2-2ax+c£¨a¡Ù0£©ÓëyÖá½»ÓÚµãC£¨O£¬-4£©£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬µãAµÄ×ø±êΪ£¨4£¬0£©£®£¨1£©Çó¸ÃÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©µãP£¨t£¬O£©ÊÇÏß¶ÎABÉÏÒ»¶¯µã£¨²»ÓëA¡¢BÖØºÏ£©£¬¹ýPµã×÷PE¡ÎAC£¬½»BCÓÚE£¬Á¬½ÓCP£¬Çó¡÷CPEµÄÃæ»ýSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ö¸³ötµÄȡֵ·¶Î§£»
£¨3£©Èçͼ2£¬ÈôƽÐÐÓÚxÖáµÄ¶¯Ö±ÏßrÓë¸ÃÅ×ÎïÏß½»ÓÚµãQ£¬ÓëÖ±ÏßAC½»ÓÚF£¬µãDµÄ×ø±êΪ£¨2£¬0£©£®ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßr£¬Ê¹µÃ¡÷0DFΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãQ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨!£©A£¬CÁ½µãµÄ×ø±ê´úÈë½âÎöʽ¼´¿É£®
£¨2£©Í¨¹ýÏàËÆ±íʾ³öEµã×ø±ê£¬ÀûÓÃÃæ»ýµÄ²îÇó¡÷PECÃæ»ý£®
£¨3£©¡÷ODFΪµÈÑüÈý½ÇÐΣ¬Ã»ÓÐÈ·µ×±ß£¬Òª·ÖÀàÌÖÂÛ£¬ÓÉÏß¶ÎÏàµÈÇó³öQµã×ø±ê£¬È»ºó´úÈëÅ×ÎïÏߵĽâÎöʽÇó½â£®
£¨2£©Í¨¹ýÏàËÆ±íʾ³öEµã×ø±ê£¬ÀûÓÃÃæ»ýµÄ²îÇó¡÷PECÃæ»ý£®
£¨3£©¡÷ODFΪµÈÑüÈý½ÇÐΣ¬Ã»ÓÐÈ·µ×±ß£¬Òª·ÖÀàÌÖÂÛ£¬ÓÉÏß¶ÎÏàµÈÇó³öQµã×ø±ê£¬È»ºó´úÈëÅ×ÎïÏߵĽâÎöʽÇó½â£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃ
£¬
½âµÃ
¡à¸ÃÅ×ÎïÏߵĺ¯Êý½âÎöʽΪy=0.5x2-x-4£»
£¨2£©¹ýµãE×÷EG¡ÍxÖáÓÚG£¬
ÓÉ0.5x2-x-4=0£¬
µÃx1=-2£¬x2=4£®
AB=6£¬BP=2+t£¬
Ö¤¡÷BPE¡×¡÷BAC£¬¿ÉµÃEG=
£¨t+2£©£¬
S=S¡÷CPB-S¡÷BPE=
BP•CO-
BP•EG=
£¨t+2£©£¨4-
£¨t+2£©£©=-
t2+
t+
-2£¼t£¼4£®
£¨3£©ÕâÑùµÄQµã´æÔÚ£¬Ê¹µÃ¡÷ODFΪµÈÑüÈý½ÇÐΣ®
¢Ùµ±OF=DFʱ£¬Q£¨x£®-3£©
0.5x2-x-4=-3£¬x=1¡À
£¬
¡àQ1(1+
£¬-3)£¬Q2(1-
£¬-3)
¢Úµ±OD=DF=2ʱ£¬Q£¨x£¬-2£©
0.5x2-x-4=-2£¬x=1¡À
£¬
¡àQ3(1+
£¬-2)£¬Q4(1-
£¬-2)£®
|
½âµÃ
|
¡à¸ÃÅ×ÎïÏߵĺ¯Êý½âÎöʽΪy=0.5x2-x-4£»
£¨2£©¹ýµãE×÷EG¡ÍxÖáÓÚG£¬
ÓÉ0.5x2-x-4=0£¬
µÃx1=-2£¬x2=4£®
AB=6£¬BP=2+t£¬
Ö¤¡÷BPE¡×¡÷BAC£¬¿ÉµÃEG=
| 2 |
| 3 |
S=S¡÷CPB-S¡÷BPE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
-2£¼t£¼4£®
£¨3£©ÕâÑùµÄQµã´æÔÚ£¬Ê¹µÃ¡÷ODFΪµÈÑüÈý½ÇÐΣ®
¢Ùµ±OF=DFʱ£¬Q£¨x£®-3£©
0.5x2-x-4=-3£¬x=1¡À
| 3 |
¡àQ1(1+
| 3 |
| 3 |
¢Úµ±OD=DF=2ʱ£¬Q£¨x£¬-2£©
0.5x2-x-4=-2£¬x=1¡À
| 5 |
¡àQ3(1+
| 5 |
| 5 |
µãÆÀ£º¢ÙµãÔÚͼÏóÉÏÔòËüµÄ×ø±êÂú×ã½âÎöʽ£¬¢ÚûÓбßÔÚ×ø±êÖáÉϵÄÈý½ÇÐÎÇóÃæ»ýҪת»¯£®¢ÛÀûÓü¸ºÎͼÐηÖÀ࣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿