题目内容


如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).

(1)写出A,B两点的坐标;

(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?

(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.


解:(1)令y=0,则﹣x+8=0,

解得x=6,

x=0时,y=y=8,

∴OA=6,OB=8,

∴点A(6,0),B(0,8);

(2)在Rt△AOB中,由勾股定理得,AB===10,

∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,

∴AP=2t,

AQ=AB﹣BQ=10﹣t,

∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t),

∴△AQP的面积S=×2t×(10﹣t)=﹣(t2﹣10t)=﹣(t﹣5)2+20,

∵﹣<0,0<t≤3,

∴当t=3时,△AQP的面积最大,S最大=﹣(3﹣5)2+20=

(3)若∠APQ=90°,则cos∠OAB=

=

解得t=

若∠AQP=90°,则cos∠OAB=

=

解得t=

∵0<t≤3,

∴t的值为

此时,OP=6﹣2×=

PQ=AP•tan∠OAB=(2×)×=

∴点Q的坐标为(),

综上所述,t=秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标为().


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网