题目内容
已知点A(a,
)、B(2a,y)、C(3a,y)都在抛物线
上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有
、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
解:(1)由5
=0,······················· (1分)
得
,
.························· (3分)
∴抛物线与x轴的交点坐标为(0,0)、(
,0).··········· (5分)
(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),········· (6分)
分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有
=S
-
-
················ (7分)
=
-
-
············ (8分)
=5(个单位面积)······················· (9分)
(3)如:
. ······················ (12分)
事实上,
=45a2+36a.
3(
)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.
∴
.
练习册系列答案
相关题目