题目内容
下列所述的图形中,既是轴对称图形,又是中心对称图形的是( )
A. 平行四边形 B. 等腰直角三角形 C. 菱形 D. 正五边形
如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是( )
A. 1,﹣3,0 B. 0,﹣3,1 C. ﹣3,0,1 D. ﹣3,1,0
如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )
A. B. C. D.
先化简,再求值: ,其中x=﹣3
如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=,其中正确的结论有( )
A. ①②④ B. ①②③ C. ②③④ D. ①③④
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
–2的相反数是( )
A. 2 B. C. –2 D. 以上都不对
把代数式3x3-12x2+12x分解因式,结果正确的是 ( )
A. 3x(x2-4x+4) B. 3x(x-4)2
C. 3x(x+2)(x-2) D. 3x(x-2)2