题目内容


如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.

(1)求证:AE=CD;

(2)若AC=12cm,求BD的长.


 (1)证明:∵DB⊥BC,CF⊥AE,

∴∠DCB+∠D=∠DCB+∠AEC=90°.

∴∠D=∠AEC.

又∵∠DBC=∠ECA=90°,

且BC=CA,

在△DBC和△ECA中,

∴△DBC≌△ECA(AAS).

∴AE=CD.

 

(2)解:由(1)得AE=CD,AC=BC,

在Rt△CDB和Rt△AEC中

∴Rt△CDB≌Rt△AEC(HL),

∴BD=CE,

∵AE是BC边上的中线,

∴BD=EC=BC=AC,且AC=12cm.

∴BD=6cm.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网