题目内容
如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是_____.
对于两个不同的有理数a,b定义一种新的运算如下: ,如,那么=__________.
解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
如图,直线a,b,c分别与直线m,n交于点A,B,C,D,E,F,直线a∥b∥c,若AB=2,BC=3,则 的值为( )
A. B. C. D.
如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)
(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;
(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.
(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.
若,,则__________.
如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需( )
A. AB=DC B. OB=OC C. ∠C=∠D D. ∠AOB=∠DOC
将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的__________.
在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_____;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.