题目内容

已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:
①图象的开口一定向上;
②图象的顶点一定在第四象限;
③图象与x轴的交点有一个在y轴的右侧.
以上说法正确的个数为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
C
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:∵a>0,故①正确;
∵顶点横坐标-<0,故顶点不在第四象限,②错误,
∵a>0,
∴抛物线开口向上,
∵c<0,
∴抛物线与y轴负半轴相交,
故与x轴交点,必然一个在正半轴,一个在负半轴,故③正确.
故选C.
点评:本题考查二次函数的草图的确定与二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网