题目内容
分析:根据对称中心平分对应线段找出A和B的对称点,从而可得出线段AB关于原点对称的图形.
解答:解:所作图形如下所示:

点评:本题考查旋转作图的知识,难度不大,注意掌握中心对称的性质.
练习册系列答案
相关题目
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=
x2于点A、B,交抛物线C2:y=
x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
| m | 1 | 2 | 3 |
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=
x2于点A、B,交抛物线C2:y=
x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
由上表猜想:对任意m(m>0)均有
=______.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.

【猜想与证明】
填表:
| m | 1 | 2 | 3 |
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为______;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为______.
如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:
于点A、B,交抛物线C2:
于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.
【猜想与证明】
填表:
|
m |
1 |
2 |
3 |
|
|
|
|
|
由上表猜想:对任意m(m>0)均有
=
.请证明你的猜想.
【探究与应用】
(1)利用上面的结论,可得△AOB与△CQD面积比为 ;
(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;
【联想与拓展】
如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为 .
![]()