题目内容
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置A与C重合,O与E重合.
(1)求图1中,A,B,D三点的坐标.
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式.
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时RT△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式.
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在请求出P的坐标,若不存在请说明理由.
答案:
解析:
解析:
|
解:(1) (2)
当 当 可知: (求梯形 (3)图2中,作 (4)当 当 由 当 综上所述,符合条件的圆心 |
练习册系列答案
相关题目