题目内容


如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,

(1)求出此抛物线的解析式、对称轴以及B点坐标;

(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.


              解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);

由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);

把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,

解得:k=5,

∴此抛物线的解析式为y=x2+5x+4,

∴此抛物线的对称轴为x=﹣=﹣

令y=0得x2+5x+4=0,

解得:x1=﹣1,x2=﹣4,

∴点B的坐标为(﹣1,0).

(2)∵A(﹣4,0),C(0,4),

∴OA=OC=4,

∴∠OCA=∠OAC.

∵∠AOC=90°,OB=1,OC=OA=4,

∴AC==4,AB=OA﹣OB=4﹣1=3.

∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.

又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.

∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,

=,即=

解得:CD=

∴OD=CD﹣CO=﹣4=

∴点D的坐标为(0,﹣).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网