题目内容

如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 _________ 

 或3 

解:当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=3,BC=4,

∴AC==5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,

∴EB=EB′,AB=AB′=3,

∴CB′=5﹣3=2,

设BE=x,则EB′=x,CE=4﹣x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2

∴x2+22=(4﹣x)2,解得x=

∴BE=

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=3.

综上所述,BE的长为或3.

故答案为:或3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网