题目内容
在数学课外小组活动中,小红同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面直径为6,高为4.则这个圆锥漏斗的侧面积是
- A.12π
- B.15π
- C.24π
- D.30π
B
分析:直角△SOA中利用勾股定理求得母线长,然后利用扇形的面积公式S=
LR即可求解.
解答:
解:∵直角△SOA中,OA=
×6=3,OS=4,
∴SA=
=
=5,
底面周长是:6π.
则侧面积是:
×6π×5=15π.
故选B.
点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
分析:直角△SOA中利用勾股定理求得母线长,然后利用扇形的面积公式S=
解答:
∴SA=
底面周长是:6π.
则侧面积是:
故选B.
点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
练习册系列答案
相关题目