题目内容
长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是 .
(3分)化简= .
如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.
下图能说明∠1>∠2的是( )
已知,如图,PA是⊙O切线,切点为A,PB交⊙O于C且过圆心O,D是OB中点,连结AB并延长交⊙O于E,若∠APB=30°,AP=,求AE的长.
如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 。
如图,已知⊙O的半径是R.C,D是直径AB同侧圆周上的两点,弧AC的度数为96°,弧BD的度数为36°,动点P在AB上,则PC+PD的最小值为( )
A.2R B.R C.R D.R
在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠DBE的值是 .
如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.
(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);
(2)设△MNC与△OAB重叠部分的面积为S.
①试求S关于t的函数关系式;
②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.