题目内容
先观察下列各式:
=
(1-
),
=
(
-
),
=
(
-
),…
=
(
-
).
根据以上的观察,计算:
+
+
+…+
的值.
| 1 |
| 1×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×7 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7×10 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| n(n+3) |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
根据以上的观察,计算:
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| 7×10 |
| 1 |
| 2005×2008 |
分析:由式
=
(1-
),
=
(
-
),
=
(
-
),…
=
(
-
)可以看出,分子是1,分母是相差3的两个自然数的乘积等于以这两个自然数为分母,分子是1的两个分数差的
,由此规律把原算式裂项,求得结果即可.
| 1 |
| 1×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×7 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7×10 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| n(n+3) |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
| 1 |
| 3 |
解答:解:原式=
×(1-
)+
×(
-
)+
×(
-
)+…+
×(
-
)
=
×(1-
+
-
+
-
+…+
-
)
=
×(1-
)
=
×
=
.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| 3 |
| 1 |
| 2005 |
| 1 |
| 2008 |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| 2005 |
| 1 |
| 2008 |
=
| 1 |
| 3 |
| 1 |
| 2008 |
=
| 1 |
| 3 |
| 2007 |
| 2008 |
=
| 669 |
| 2008 |
点评:此题考查利用分数的拆项,把有理数的混合运算,转化为有规律的简便运算,使计算简便可行.
练习册系列答案
相关题目