题目内容

如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C。若∠A=40°,∠B'=110°,则∠BCA'的度数是(    )

A.110°           B.80°            C.40°          D.30°

 

【答案】

B.

【解析】

试题分析:首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.

根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,

∵∠A=40°,

∴∠A′=40°,

∵∠B′=110°,

∴∠A′CB′=180°-110°-40°=30°,

∴∠ACB=30°,

∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,

∴∠ACA′=50°,

∴∠BCA′=30°+50°=80°,

故选:B.

考点: 旋转的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网