题目内容
已知关于x的一元二次方程ax2+x-a=0(a≠0).(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;
(2)设x1、x2是该方程的两个根,若|x1|+|x2|=4,求a的值.
分析:(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根,即证明一元二次方程的根的判别式△=b2-4ac>0,则方程有两个不相等的实数根,若两根之积小于0,则方程有两个异号的实数根;
(2)根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把|x1|+|x2|=4变形成与两根之和与两根之积有关的式子,代入两根之和与两根之积,求得a的值.
(2)根据一元二次方程的根与系数的关系得到,两根之和与两根之积,把|x1|+|x2|=4变形成与两根之和与两根之积有关的式子,代入两根之和与两根之积,求得a的值.
解答:证明:(1)∵△=1+4a2.
∴△>0.
∴方程恒有两个实数根.
设方程的两根为x1,x2.
∵a≠0.
∴x1•x2=-1<0.
∴方程恒有两个异号的实数根;
解:(2)∵x1•x2<0.
∴|x1|+|x2|=|x1-x2|=4.
则(x1+x2)2-4x1x2=16.
又∵x1+x2=-
.
∴
+4=16.
∴a=±
.
∴△>0.
∴方程恒有两个实数根.
设方程的两根为x1,x2.
∵a≠0.
∴x1•x2=-1<0.
∴方程恒有两个异号的实数根;
解:(2)∵x1•x2<0.
∴|x1|+|x2|=|x1-x2|=4.
则(x1+x2)2-4x1x2=16.
又∵x1+x2=-
| 1 |
| a |
∴
| 1 |
| a2 |
∴a=±
| ||
| 6 |
点评:(1)一元二次方程根的情况与判别式△的关系:
①△>0?方程有两个不相等的实数根;
②△=0?方程有两个相等的实数根;
③△<0?方程没有实数根.
(2)一元二次方程根与系数的关系:xl+x2=-
,xl•x2=
.
①△>0?方程有两个不相等的实数根;
②△=0?方程有两个相等的实数根;
③△<0?方程没有实数根.
(2)一元二次方程根与系数的关系:xl+x2=-
| b |
| a |
| c |
| a |
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
| 1 |
| x1 |
| 1 |
| x2 |
| A、8 | B、-7 | C、6 | D、5 |