ÌâÄ¿ÄÚÈÝ
ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓÐ
£¨1£©Óû»Ôª·¨½â·½³Ì
+
+3=0£¬Éè
=y£¬ÔòÔ·½³Ì¿É»¯Îªy+
+3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+
=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬ÔòÔʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
- A.1¸ö
- B.2¸ö
- C.3¸ö
- D.4¸ö
D
·ÖÎö£º£¨1£©»»Ôª·¨½â·Öʽ·½³Ì£¬ÒªÃ÷È·Á½¸ö·ÖʽÓëyµÄ¹ØÏµ£»
£¨2£©Åä·½·¨µÄÁé»îÔËÓã¬ÒªÑ§»áÓÃÆ½·½¹ØÏµ°ÑËùÇóÓëÒÑÖªÁªÏµÆðÀ´£»
£¨3£©Åä·½·¨¡¢·Ç¸ºÊýµÄÔËÓã»
£¨4£©ÏâǶÎÊÌ⣬ҪÇó×é³ÉµÄ¼¸¸ö½ÇºÍΪ360¡ã£®
½â´ð£º£¨1£©Éè
=y£¬Ôò
=
£¬Ô·½³Ì¿É»¯Îªy+
+3=0£®ÕýÈ·£»
£¨2£©ÔËÓÃÍêȫƽ·½¹«Ê½£®ÕýÈ·£»
£¨3£©ÒªÏëÈõÈʽ³ÉΪ0£¬Ôò±ØÐëÈøùºÅÀïµÄºÍƽ·½¶¼Îª0£¬ÕýÈ·£»
£¨4£©ÒòΪËıßÐεÄÄڽǺÍΪ360¡ã£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£¬ÕýÈ·£®
¹ÊÑ¡D£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËѧÉúµÄ½â·½³ÌµÄÄÜÁ¦£¬¼°¶ÔËıßÐεÄÕÆÎÕÇé¿ö£®
·ÖÎö£º£¨1£©»»Ôª·¨½â·Öʽ·½³Ì£¬ÒªÃ÷È·Á½¸ö·ÖʽÓëyµÄ¹ØÏµ£»
£¨2£©Åä·½·¨µÄÁé»îÔËÓã¬ÒªÑ§»áÓÃÆ½·½¹ØÏµ°ÑËùÇóÓëÒÑÖªÁªÏµÆðÀ´£»
£¨3£©Åä·½·¨¡¢·Ç¸ºÊýµÄÔËÓã»
£¨4£©ÏâǶÎÊÌ⣬ҪÇó×é³ÉµÄ¼¸¸ö½ÇºÍΪ360¡ã£®
½â´ð£º£¨1£©Éè
£¨2£©ÔËÓÃÍêȫƽ·½¹«Ê½£®ÕýÈ·£»
£¨3£©ÒªÏëÈõÈʽ³ÉΪ0£¬Ôò±ØÐëÈøùºÅÀïµÄºÍƽ·½¶¼Îª0£¬ÕýÈ·£»
£¨4£©ÒòΪËıßÐεÄÄڽǺÍΪ360¡ã£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£¬ÕýÈ·£®
¹ÊÑ¡D£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËѧÉúµÄ½â·½³ÌµÄÄÜÁ¦£¬¼°¶ÔËıßÐεÄÕÆÎÕÇé¿ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿