题目内容
【题目】如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧
的长为 . ![]()
【答案】![]()
【解析】解:∵AB是⊙O切线,
∴AB⊥OB,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=90°﹣∠A=60°,
∴∠BOC=120°,
∴
的长为
=
.
所以答案是
.
【考点精析】关于本题考查的切线的性质定理和弧长计算公式,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的才能得出正确答案.
练习册系列答案
相关题目