题目内容
(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值.
分析:(1)根据轴对称得出直线y=x+b是线段OO′的垂直平分线,推出AO=AO′,BO=BO′,求出AO=AO′=BO=BO′,即可推出答案;
(2)设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),得出等腰直角三角形ONP,求出OM⊥NP,求出MP=OM=1,根据勾股定理求出即可.
(2)设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),得出等腰直角三角形ONP,求出OM⊥NP,求出MP=OM=1,根据勾股定理求出即可.
解答:(1)证明:连接OO′,
∵点O关于直线y=x+b的对称,
∴直线y=x+b是线段OO′的垂直平分线,
∴AO=AO′,BO=BO′,
又∵OA,OB是⊙O的半径,
∴OA=OB,
∴AO=AO′=BO=BO′,
∴四边形OAO′B是菱形.
(2)解:如图,当点O′落在圆上时,
∵OM=
OO′=1,
∵设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),
∴△ONP为等腰直角三角形,
∴∠ONP=45°,
∵四边形OAO′B是菱形,
∴OM⊥PN,
∵∠ONP=45°=∠OPN,
∴OM=PM=MN=1,
在Rt△POM中,由勾股定理得:OP=
,
即b=
.
∵点O关于直线y=x+b的对称,
∴直线y=x+b是线段OO′的垂直平分线,
∴AO=AO′,BO=BO′,
又∵OA,OB是⊙O的半径,
∴OA=OB,
∴AO=AO′=BO=BO′,
∴四边形OAO′B是菱形.
(2)解:如图,当点O′落在圆上时,
∵OM=
| 1 |
| 2 |
∵设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),
∴△ONP为等腰直角三角形,
∴∠ONP=45°,
∵四边形OAO′B是菱形,
∴OM⊥PN,
∵∠ONP=45°=∠OPN,
∴OM=PM=MN=1,
在Rt△POM中,由勾股定理得:OP=
| 2 |
即b=
| 2 |
点评:本题考查了一次函数,等腰直角三角形,勾股定理,菱形的判定等知识点的应用,主要考查学生运用定理进行推理的能力,注意:图形和已知条件的结合,题目比较典型,难度也适中,是一道比较好的题目.
练习册系列答案
相关题目