题目内容

作业宝如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD、AF.试求∠DAF的度数.

解:在△ABC中,∵∠BAC=110°,
∴∠B+∠C=180°-110°=70°,
∵E、G分别是AB、AC的中点,
又∵DE⊥AB,FG⊥AC,
∴AD=BD,AF=CF,
∴∠BAD=∠B,∠CAF=∠C,
∴∠DAF=∠BAC-(∠BAD+∠CAF)
=∠BAC-(∠B+∠C)=110°-70°=40°.
分析:根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线求出AD=BD,AF=CF,推出∠BAD=∠B,∠CAF=∠C,即可求出答案.
点评:本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网