题目内容
在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图中所示的方式放置.点A1、A2、A3,…和B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,-1),
,
,则点A3的坐标是多少?点An的坐标又是多少?

∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(
∴A1(1,1),即(5×(
∴OB1=2OE=2,OB2=OB1+B1F=2+2×(
将A1与A2的坐标代入y=kx+b中得:
解得:
∴直线解析式为y=
设B2G=A3G=b,则有A3坐标为(5+b,b),
代入直线解析式得:b=
解得:b=
∴A3坐标为(
依此类推An(5×(
故点A3的坐标是:(
分析:根据正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将A1、A2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求直线解析式,由正方形的性质求出OB1,OB2的长,设B2G=A3G=b,表示出A3的坐标,代入直线方程中列出关于b的方程,求出方程的解得到b的值,确定出A3的坐标,依此类推寻找规律,即可求出An的坐标.
点评:此题考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.
练习册系列答案
相关题目