题目内容
如果将二次函数的图象向上平移5个单位,得到新的图象的二次函数表达式是( )
A. B. C. D.
如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②',…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )
A.2 B.4 C.8 D.16
如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积为7,DE=2,AB=4,则AC长是( )
A. 2 B. 3 C. 4 D. 5
(16分)已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.
(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.
若抛物线开口向下,则m= .
(12分)问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,求AP+BP的最小值.
尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有=,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
自主探索:在“问题提出”的条件不变的情况下, AP+BP的最小值为 .
拓展延伸:已知扇形COD中,∠COD=90º,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.
如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒2个单位长度.当t= 时,△CBD是等腰三角形.
某厂1月份生产原料a吨,以后每个月比前一个月增产x%,3月份生产原料的吨数是( )
比较大小:____________;____________.